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Abstract. As the second most populous country and third fastest growing economy, India has emerged as a global economic

power. As such, its emissions of greenhouse and ozone-depleting gases are of global significance. However, unlike neighbour-

ing China, the Indian sub-continent is very poorly monitored by existing measurement networks. Of the greenhouse/ozone-

depleting gases, India’s emissions of synthetic halocarbons (here defined as chlorofluorocarbons (CFCs), hydrochlorofluoro-

carbons (HCFCs) and hydrofluorocarbons (HFCs)) are not well-known. Previous measurements from the region have been5

obtained at observatories many hundreds of miles from source regions, or at high altitudes, limiting their value for the esti-

mation of regional emission rates. Given the projected rapid growth in demand for refrigerants in India, emission estimates of

these halocarbons are urgently needed, to provide a benchmark against which future changes can be evaluated. In this study, we

report the first atmospheric-measurement derived emissions of the ozone-depleting CFCs and HCFCs, and potent greenhouse

gas HFCs from India. Air samples were collected at low-altitude during a 2-month aircraft campaign between June and July10

2016. Emissions were derived from measurements of these samples using an inverse modelling framework and evaluated to as-

sess India’s progress in phasing out ozone-depleting substances (ODS) under the Montreal Protocol. Our CFC estimates show

that India contributed 52 (26 – 83) Tg CO2eq yr−1, which were 7 (4 – 12) % of global emissions in 2016. HCFC-22 emissions

at 7.8 (6.0 – 9.9) Gg yr−1 were of similar magnitude to emissions of HFC-134a (8.2 (6.1 – 10.7) Gg yr−1), suggesting that

India used a range of HCFC and HFC refrigerants in 2016. We estimated India’s HFC-23 emissions to be 1.2 (0.9 – 1.5) Gg15

yr−1 and our results are consistent with resumed venting of HFC-23 by HCFC-22 manufacturers following the discontinuation

of funding for abatement under the Clean Development Mechanism. We report small emissions of HFC-32 and HFC-143a and

provide evidence that HFC-32 emissions were primarily due to fugitive emissions during manufacturing processes. Lack of

significant correlation among HFC species and the small emissions derived for HFC-32 and HFC-143a indicate that in 2016,

India’s use of refrigerant blends R-410A, R-404A and R-507A was limited, despite extensive consumption elsewhere in the20

world.
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1 Introduction

Chlorofluorocarbons (CFCs) were used widely around the world for refrigeration, air-conditioning and foam blowing (Montzka

et al., 1999) until they were found to deplete stratospheric ozone (Wallington et al., 1994). These species were thus regulated

under the Montreal Protocol on Substances that Deplete the Ozone Layer. The adoption of the Montreal Protocol and its5

amendments subsequently led to a marked reduction in emissions of ozone-depleting substances (ODS) (Derwent et al., 1998;

Velders et al., 2007). However, emissions are expected to continue, particularly from developing (Article 5) nations (Vollmer

et al., 2009; Wan et al., 2009), predominantly from banked sources such as refrigerators and rigid foams (Vollmer et al., 2009).

While the emissions of many ODS are declining, broadly in line with expectations, the emissions of some species, CFC-11 in

particular, have not reduced in the last decade, and are now increasing (Montzka et al., 2018). The reason for rising emissions10

of this gas is not yet known, although evidence suggests new production, likely originating from Asia, which has not been

reported to the United Nations Environment Programme (UNEP).

As a consequence of the Montreal Protocol, emissions of the first-generation of CFC replacements, the hydrochlorofluo-

rocarbons (HCFCs), species with similar thermodynamic properties to CFCs but reduced ozone-depletion potentials (ODP),

increased considerably in the 1990s and 2000s (Montzka et al., 2009). Because HCFCs still have non-zero ODPs, they were15

subsequently also regulated under the Copenhagen Amendment to the Montreal Protocol in 2004. Article 5 countries are

currently permitted to emit HCFCs but began their HCFC phase-out in 2013, with reduction targets outlined by the HCFC

phase-out management plan (HPMP (UNDP, 2013)). Recently, it was reported that global emissions of the three major HCFCs

(HCFC-22, HCFC-141b and HCFC-142b) had stabilised or were decreasing, largely due to decreasing emissions from the

developed world (Montzka et al., 2014; Simmonds et al., 2017).20

Following regulation of HCFCs, the second-generation replacements, hydrofluorocarbons (HFCs) were adopted because

they do not appreciably deplete stratospheric ozone. However, their high Global Warming Potentials (GWP, Table 1) mean that

HFCs contribute to global climate change, leading to recent efforts to reduce consumption. The 2016 Kigali Amendment to the

Montreal Protocol set out targets for a gradual phase-down of HFC production and consumption. The first cuts by most Article

5 countries will not be required until 2024 and a small number of these countries will not be required to freeze emissions until25

2028. Except for HFC-23 (Simmonds et al., 2018), whose emissions are a by-product of HCFC-22 production, and HFC-152a,

whose emissions have stabilised since 2010 (Simmonds et al., 2016), global emissions of all major HFCs were rising until at

least the end of 2016 (Simmonds et al., 2017).

India, an Article 5 country under the Montreal Protocol, ratified the Protocol in 1992. A complete phase-out of CFCs was

mandated in India by 2010. Except for use in metered dose inhalers, which ceased in 2010, India reported a complete phase-30

out of both the production and consumption of CFCs in 2008 (UNDP, 2013). Emissions from existing banks, such as old

refrigeration appliances, are however, likely to persist. Following phase-out of CFCs, India was required to reduce emissions

of HCFCs. Under Stage I of the HPMP, production and consumption of HCFCs for dispersive use was designated to be frozen
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by January 1st, 2016, followed by complete phase-out by 2040. At the 19th Meeting of the Parties in 2007, India agreed to an

acceleration of this schedule. Under Stage II of the HPMP, India agreed to freeze its consumption of HCFCs at the base level

(2009/10 average) by 2013, followed by a 10% reduction (relative to the base level) by 2015 and a complete phase-out by 2030.

In 2016, India adopted the Kigali Amendment, under which it will also begin to phase-down its production and consumption of

HFCs. However, its developing status means it will not be required to make its first reductions until 2028, and in the meantime,5

India’s demand for HFCs is expected to rise dramatically (Purohit et al., 2016).

With a population exceeding one billion and a rapidly expanding economy, India’s ODS and HFC emissions are expected

to have global significance. Based on inferred consumption trends, Velders et al. (2015) estimated that India will emit 400 Tg

CO2eq yr−1 of HFCs in 2050, a 67-fold increase over 2016 emissions. However, little else is known about India’s emissions.

Estimates from bottom-up, inventory-based methods have only been made for a subset of HFCs (HFC-134a, HFC-152a and10

HFC-23) in India and only up to 2010 (Garg et al., 2006; MoEFCC, 2012, 2015). Emissions of these gases have never been

estimated for India through regional ‘top-down’ or inverse modelling approaches that use atmospheric mole fraction measure-

ments to infer surface fluxes. However, top-down methods have been applied elsewhere in Asia (Palmer et al., 2003; Yokouchi

et al., 2005; Kim et al., 2010; Saikawa et al., 2012; Stohl et al., 2010).

Previous studies in other countries have shown that there can be large discrepancies between national inventories of ODS and15

HFCs and those inferred from atmospheric observations (Graziosi et al., 2017; Lunt et al., 2015; Say et al., 2016). Therefore,

this dual quantification approach has been highlighted by many organizations as being beneficial for accurate and transparent

greenhouse gas reporting (Leip et al., 2018). In this study, we present the first top-down emissions estimates of CFCs, HCFCs

and HFCs and provide a 2016 benchmark, which is critical for being able to evaluate future policy changes surrounding India’s

ODS and HFC emissions.20

2 Materials and Methods

2.1 Collection and analysis of air samples

Atmospheric samples were collected in evacuated 3 L stainless steel electro-polished flasks aboard the UK’s FAAM (Facility for

Airborne Atmospheric Measurements) BAe-146 research aircraft. In total 176 samples were collected over 11 flights conducted

between the 12th June and 9th July 2016 (Table 2). On nine of these flights, samples were collected over northern India at25

altitudes ranging predominantly between 0 – 1.5 km (Fig. 1). Air was drawn through a forward-facing air sampling pipe on the

exterior of the aircraft and pressurised into the sample flasks using a metal bellows pump (Senior Aerospace PWSC 28823-7).

Sample flasks were evacuated to 1x10e−5 psig prior to each flight. Before sample collection, the lines within each sample case

were flushed with ambient air for a minimum of one minute. Sample flasks were filled to a maximum pressure of 41 psig,

giving a usable sample volume of 9 L at atmospheric pressure. Sample filling typically varied between 25 - 60 seconds in30

duration, depending on altitude (equivalent to ~7 km of flight track at average cruise velocity). Canisters were filled at regular

intervals during each flight (interval dependent on flight length). When not in use, flask samples were stored in a container

with no air-conditioning, to eliminate the risk of sample contamination from leaking air-conditioning refrigerant. None of the
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gases discussed here were present on the research aircraft itself, and the laboratory at the University of Bristol does not contain

an HFC filled air-conditioning unit. Apart from flasks collected over the Arabian Sea, samples were transported from India to

Bristol within 1 month of collection.

Flask samples were analysed using the Medusa GCMS analytical system, with modifications to the analysis routine devel-

oped to account for the small volume and low pressure of the flask samples. In the set-up described previously (Miller et al.,5

2008; Arnold et al., 2012), atmospheric measurements were derived from 2 L samples, injected into the pre-concentration

system at a flow rate of 100 cm3 min−1, resulting in a total injection time of 20 minutes. For this work, each measurement was

derived from three 1.75 L analyses, injected into the analytical system at a flow rate of 50 cm3 min−1, resulting in a total injec-

tion time of 35 minutes. The analysis of each flask was bracketed by analyses of a quaternary reference gas, to account for short

term drifts in detector sensitivity. ODS/HFC mole fractions are reported relative to a set of gravimetrically prepared ‘primary’10

standards, maintained at the Scripps Institute of Oceanography (SIO), via a hierarchy of compressed real-air standards held in

34 L electro-polished stainless-steel canisters (Essex Industries, Missouri, USA). The working (quaternary) standard was com-

pared to a tertiary tank on a roughly monthly basis. System blanks were conducted monthly, to quantify possible interferences

from system leaks and carrier gas impurities. For each gas, the ratio of target to qualifier ion(s) was continually monitored to

ensure that co-eluting species did not interfere with the analyses. For each flask, measurement precision was estimated as the15

standard deviation of the three replicate analyses. Average measurement precisions are shown in Table 3 and are comparable

to the precisions reported previously by Miller et al. (2008).

2.2 Numerical Atmospheric Modelling Environment (NAME)

A Lagrangian particle dispersion model was used to quantify the influence of surface fluxes on each atmospheric measure-

ment. The Met Office NAME (Numerical Atmospheric dispersion Modelling Environment) model was run in backwards mode20

(Manning et al., 2011) to generate 30-day air histories for every minute along each flight path (each minute represents ap-

proximately 7 km of the flight track at average speed). These air histories represent the sensitivity of a measurement to fluxes

from the surface (defined as 0 - 40 meters above ground level). NAME was driven using meteorological output from the op-

erational analysis of the UK Met Office Numerical Weather Prediction model, the Unified Model, with a horizontal resolution

of approximately 17 km in 2016. The model domain spanned from 55 – 109 ◦E and 6 – 48 ◦N up to 19 kilometres altitude.25

For each flight minute, tracer particles were released at a rate of 1000 particles min−1 from a cuboid, whose dimensions were

determined by the change in latitude, longitude and altitude of the aircraft during that one-minute period. In general, samples

were collected during level sections of each flight path, minimising transport errors that could arise from the result of releasing

particles over a range of altitudes. At the boundaries of the domain, the three-dimensional location and time at which each

particle left the domain was recorded to provide the sensitivity to boundary conditions.30

The ability of NAME to accurately simulate transport is critical for ensuring robust emission estimates. Model simulated

wind direction and speed were compared to meteorological data recorded on board the FAAM aircraft (Fig. S1–S2). To ensure

that possible transport errors arising as a result of the inaccurate simulation of meteorological parameters did not affect our pos-

terior estimates, emissions derived using the complete set of atmospheric measurements were compared to those derived from
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a filtered dataset (Fig. S3), whereby observations corresponding to periods where the NAME simulated wind speed/direction

differed from the measured meteorology by more than 20% were removed.

2.3 Inverse modelling using atmospheric dispersion modelling

Our inverse method is based on the trans-dimensional approach described by Lunt et al. (2016). Emissions and uncertainties

were characterized using principals of hierarchical Bayesian modelling detailed in Ganesan et al. (2014). The inverse approach5

solves for a parameter vector, x (including flux fields and boundary conditions), using measurement data, y. In a Bayesian

framework, independent prior knowledge of emissions, xap, is used in conjunction with measurements to solve for a posterior

emissions distribution, x using a linear model, H (Eq. 1).

y = Hx + ε (1)

H is a Jacobian matrix of sensitivities, here describing the relationship between changes in atmospheric mole fractions and10

changes in the parameter vector x. ε is uncertainty arising from the model and the measurements. In a traditional Bayesian

inversion, uncertainty in xap and the model-measurement uncertainty, ε, are both assigned prior to the inversion. These un-

certainties are often poorly known and rely on a subjective decision by the investigator, but have been shown to significantly

impact upon the derived posterior emissions (Peylin et al., 2002; Rayner et al., 1999). To minimize this impact, a hierarchical

approach incorporates additional hyper-parameters, which allow for the propagation of ‘uncertainties in these uncertainties’ to15

the posterior solution.

ρ(x,θ|y)∝ ρ(y|x,θ) · ρ(x|θ) · ρ(θ) (2)

Eq. 2 is a hierarchical version of Bayes’ theorem (normalizing factor not shown for brevity). In this example, the prior

emissions uncertainty is governed by a hyper-parameter (θ), which has a probability density function (PDF) that is explored

within the inversion. This equation can also be employed in a similar way for the model-measurement uncertainty or any20

other unknown parameters. The hierarchical Bayesian approach was extended to a trans-dimensional framework, in which the

number and configuration of the spatial grid over which emissions were estimated were also unknown parameters, prior to

the inversion. Therefore, it is largely the information content of the measurements that govern these unknown aspects. This

framework has been shown to result in a more robust and justifiable quantification of uncertainties in emissions than traditional

approaches.25

In general, Eq. 2 is not solvable via analytical means and was estimated using Markov Chain Monte Carlo (MCMC). In this

application, we used MCMC with a Metropolis-Hastings algorithm. We sampled 320,000 variants of the parameter space with

the first 120,000 discarded as ‘burn-in’ to ensure that the system had no knowledge of the initial state. The remaining 200,000

samples were then used to form the posterior PDFs. In our estimates, the means of these posterior PDFs are presented, with

the uncertainties represented by the 5th and 95th percentile values.30
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Emissions were aggregated into totals for the northern-central India (NCI) region. The majority of gases, whose sources are

expected to be distributed by population, were scaled to a national total using the NCI emissions and population statistics. For

HFC-23, the NCI region incorporated 4 of the 5 known manufacturing plants for HCFC-22. To estimate national emissions,

we scaled the NCI total by the ratio of HCFC-22 produced at those four factories, to total production at all five (based on

2015 factory specific production statistics (UNEP, 2017)). Based on these statistics, over 98% of HCFC-22 was produced by5

factories residing within the NCI. HFC-32 was not scaled to an Indian total, since results show that the distribution for this gas

within India is not likely to be population-based.

While the estimates presented here represent emissions over a two-month period, they are likely to be consistent with annual

emissions of gases that are not expected to have significant seasonality in India. Seasonality in global emissions of HFC-134a

and HCFC-22 has been reported previously (Xiang et al., 2014), but India’s tropical/subtropical climate may minimize this10

variation. In addition, due to sampling by aircraft, our emissions estimates are likely to be representative of a regional-scale for

gases that have sources that are widespread and do not vary significantly in time. These characteristics are thought to be true

for most gases studied here. For gases with some episodic emissions, which we show to be the case for HFC-125, additional

caution must be made in their interpretation.

2.4 A priori emissions15

A priori emissions were assembled from a variety of sources owing to the limited information available for India. CFCs: since

a total ban on CFC production and consumption has now been in place since 2010, country specific emissions/consumption

data no longer exist. Despite this, studies suggest that emissions of these gases are ongoing (Montzka et al., 2018). To estimate

a priori total emissions over India, we scaled an estimate of 2016 global emissions derived using the AGAGE 12-box model (an

extension of Rigby et al. (2014)) by population statistics (India accounted for approximately 17.7% of the global population20

and was therefore assumed a priori to account for 17.7% of global CFC emissions). HCFCs: a priori total HCFC emissions

over India were based on 2015 consumption data reported by India in its HPMP Stage II Road Map report (MoEFCC, 2017).

Consumption is expected to be an underestimate of emissions due to the presence of banked sources such as refrigerators and

foams. However, a large uncertainty was assigned to the prior. HFCs: excluding HFC-23, prior HFC emission totals for India

were calculated by dividing the 2010 EDGAR v4.2 (European Commission, 2009) Asian continental total by population (with25

India accounting for approximately 29% of the Asian total). This was done because EDGAR does not indicate any emissions

from India. For HFC-23, prior emission totals for India were based on the 2010 HFC-23 emissions reported in India’s Biennial

Update Report to the United Nations Framework Convention on Climate Change (MoEFCC, 2015), and extrapolated to 2016

using reported HCFC-22 production data (and assuming a constant co-production ratio) (MoEFCC, 2017).

No spatial information was available for any of the ODS/HFCs studied here. For all gases, prior emissions totals were dis-30

tributed across the model domain using the National Oceanic and Atmospheric Administration (NOAA) DMSP-OLR satellite

night light data, available at the increment of 30 arc second (https://ngdc.noaa.gov/eog/data/web_data/v4composites/). The

night lights distribution was a useful starting point for our emissions maps, since night lights are generally correlated with

populated density (Raupach et al., 2010), but are also likely to include industrial sites, such as HCFC-22 manufacturing plants.

6
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Night-lights reflect where anthropogenic activity is present but does not weight the emissions a priori according to intensity. We

expected the major sources of HFCs, HCFCs and CFCs (refrigeration and air-conditioning and insulating foam) to be explicitly

linked to domestic and/or commercial activities, or from industries requiring a significant work-force.

In all gases, the prior was assigned a large uncertainty (1x10−5 times the prior), to reflect the very limited current un-

derstanding of Indian spatial ODS/HFC emissions and ensure that our flux estimates were informed overwhelmingly by the5

atmospheric observations. To ensure that the derived results were independent of the prior used, we compared results derived

using the night light-based prior with those derived with a uniform distribution (Fig. S3).

2.5 A priori boundary conditions

The footprints from NAME consider only emissions released within the model domain. Hence, a prior estimate of the mole

fraction at the boundaries of model domain must be made and incorporated into the modelled mole fraction. To this end,10

mole fraction ‘curtains’ of each gas were used to provide a priori information about boundary conditions (it should be noted

that these boundary conditions were adjusted within the inversion). For the HFCs, mole fractions were simulated using the 3D

global chemical transport model MOZART (Model for OZone and Related chemical Tracers (Emmons et al., 2010)). MOZART

was driven by offline meteorological fields from MERRA (Modern Era Retrospective-Analysis for Research and Applications

(Rienecker et al., 2011)). For the HCFCs and CFCs, MOZART fields were not available, and uniform curtains were assumed.15

The mole fraction for each curtain in each month was estimated using the AGAGE 12-box model (Rigby et al., 2014) and

measurements from five baseline AGAGE observatories. For each gas, the model was used to estimate a monthly baseline

mole fraction for four latitude bands. The simulated mole fraction from latitude bands 30 – 90 ◦N, 0 – 30 ◦N and 0 – 30 ◦S

were used to assign a priori mole fractions to the North, East and West and South curtains of the model domain respectively.

The boundary conditions associated with each NAME-simulated measurement were calculated by mapping the exit times and20

locations of particles leaving the domain to the curtains. In the inversion, a decomposition of the a priori boundary conditions,

represented as offsets to the curtains in the North, East, West and South directions, were solved for in the inversion in addition

to emissions.

2.6 Global halocarbon emissions estimation

Indian ODS/HFC emissions were compared to global emission estimates calculated using the AGAGE 12-box model (Rigby25

et al., 2014), assimilating data from five remote AGAGE background sites (Mace Head, Ireland; Trinidad Head, USA; Ragged

Point, Barbados; Cape Matatula, American Samoa and Cape Grim, Tasmania) following a Bayesian inversion methodology.

Baseline monthly means were estimated by statistically filtering the high-frequency data (O’Doherty et al., 2001). The data

were averaged into semi-hemispheres (30 ◦N – 90 ◦N, 0 ◦N – 30 ◦N, 30 ◦S – 0 ◦S, 90 ◦S – 30 ◦S) for comparison with mole

fractions predicted by the AGAGE 12-box model, which resolves these four semi-hemispheres, with vertical levels separated30

at 500 and 200 hPa (Cunnold et al., 1983; Rigby et al., 2013). The model uses annually repeating meteorology and OH

concentrations from Spivakovsky et al. (2000), tuned to match the growth rate of methyl chloroform. Temperature-dependent

rate constants from Burkholder et al. (2015) for the reaction of each halocarbon with OH were used, leading to lifetimes in the

7
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model of 51.9, 101.3, 92.7, 11.6, 9.2, 17.6, 13.3, 54.4, 30.7, 1.5, 5.3 and 237.4 years for CFC-11, CFC-12, CFC-113, HCFC-

22, HCFC-141b, HCFC-142b, HFC-134a, HFC-143a, HFC-125, HFC-152a, HFC-32 and HFC-23 respectively. A Bayesian

framework was used to derive emissions from the data and the model, in which an a priori estimate of the emissions growth

rate was adjusted to bring the model into agreement with the data (following Rigby et al. (2011)). The inversion propagates

uncertainties in the observations through to the derived fluxes and augments the derived fluxes with uncertainties due to the5

lifetime and potential errors in the calibration scale. These estimates are a 2016 extension of those presented in Rigby et al.

(2014).

3 Results

3.1 Atmospheric Measurements

Measurements were made from whole air flask samples collected over India during June and July 2016. Fig. 1 shows the lo-10

cation and altitude of these measurements along with the model-derived sensitivity of these samples to surface emissions. The

region broadly corresponding to maximum surface sensitivity from our samples is denoted as northern-central India (NCI),

where 72% of India’s population is found (SEDAC, 2016). Mole fractions of each ODS and HFC measured during the cam-

paign are shown in Fig. 2. For comparison, each gas is shown alongside baselines representative of the Northern and Southern

Hemispheres. These baselines were derived from statistical fits to observations from the Advanced Global Atmospheric Gases15

Experiment (AGAGE) sites at Mace Head, Ireland and Cape Grim, Tasmania (Prinn et al., 2018). Although all of the samples

collected during our campaign were within the Northern Hemisphere, the South Asian monsoon, which occurs annually be-

tween June and September, draws air from southern latitudes, resulting in the Indian regional background being more consistent

with the Southern Hemisphere at this time of year. For CFC-12 and CFC-113, owing to the decrease in emissions resulting from

the Montreal Protocol, the hemispheric baselines are now similar and the difference in mole fraction between hemispheres is20

smaller than the average precision of our flask measurements.

Enhancements in mole fractions over the regional background form the basis for estimating regional emissions. For all

species except HFC-134a (Supporting Information), the average mole fractions of samples collected over the Arabian Sea

were lower than those collected directly over NCI due to the prevailing westerly winds that bring well-mixed oceanic air to the

Indian subcontinent during these months. Back trajectory analysis confirmed that these samples had not interacted with any25

other significant land mass in the 30 days prior to collection. Variability in the mole fraction of samples collected over NCI

varied considerably by species. For CFC-11, CFC-12 and CFC-113, few pollution events were observed, and their signals were

of similar size to the measurement precision. Similarly, only small enhancements were observed for HCFC-142b, suggesting

its main use as a foam-blowing agent was not significant or was not widespread and thus could not be discerned in the aircraft

samples.30

In contrast, large enhancements in mole fraction were observed for HFC-134a and HCFC-22, suggesting that usage of these

substances as a refrigerant is widespread. It is likely that these gases share a range of common sources, including use in India’s

largest refrigeration and air-conditioning sector, stationary air-conditioning (Purohit et al., 2016). We find a significant (R =
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0.53, Fig. 3) relationship between HFC-134a and HCFC-22 mole fractions, supporting this assertion. Large enhancements in

HFC-23 mole fraction suggest that the samples were sensitive to emissions from HCFC-22 manufacturing facilities, as HFC-23

is a by-product of HCFC-22 production. The NCI region contains four out of the five Indian manufacturing facilities that were

registered under the Clean Development Mechanism (CDM) (https://cdm.unfccc.int/Projects/registered.html).

Enhancements were also observed in HFC-32 and HFC-125, although the observed mole fractions for these species were5

not strongly correlated (R = 0.15, Fig. 3), suggesting that India is yet to adopt refrigerant blend R-410A (50% by wt. HFC-125,

50% by wt. HFC-32) on a large scale. In a recent study, Kim et al. (2010) reported a similarly weak relationship for measure-

ments representative of Chinese emissions, suggesting that the two largest Asian economies are yet to adopt the commonly

used refrigerant blend R-410A. In contrast, HFC-125/HFC-32 measurements at Mace Head over the same time-period were

strongly correlated (R = 0.86). All enhancements in HFC-32 are found to correspond with enhancements in another halocarbon,10

dichloromethane (CH2Cl2, Fig. 3), a commonly used solvent that is also used as a feedstock in the production of HFC-32. The

significance of this correlation is discussed further in section 3.2.3.

We found no correlation for HFC-125 and HFC-143a (R = -0.04, Fig. 3), gases whose emissions are regularly linked through

the consumption of blends R-404A (52% by wt. HFC-143a, 44% by wt. HFC-125, 4% by wt. HFC-134a) and R-507A (50%

by wt. HFC-125, 50% by wt. HFC-143a) (Montzka et al., 2014; O’Doherty et al., 2014). In contrast, at Mace Head, a strong15

HFC-125/HFC-143a correlation (R = 0.78) was observed during this time.

Evidence for widespread use of both HCFCs and HFCs and the lack of large enhancements in CFCs suggests that India’s

transition to first- and second-generation CFC replacements is nearing completion. However, there appears to be little evidence

for the consumption of HFC blends or HFC-152a in 2016, refrigerants/propellant used extensively in the developed world

(Greally et al., 2007; O’Doherty et al., 2014).20

During two flights (B959 and B963) conducted on the 21st and 25th of June, a small number of samples were collected over

the Arabian Sea. NAME back-trajectory analysis was used to show that these samples had not interacted with any significant

landmass in the 30 days prior to collection. Except for HFC-134a, the measurements derived from these samples exhibited very

little variation, and the mole fractions were amongst the lowest observed during the campaign, which was consistent with the

oceanic trajectories. As such, these provided a useful constraint upon the baseline for the modelling studies. In contrast, four of25

the six samples collected on these flights exhibited an elevated HFC-134a concentration, which did not correlate with any other

species, including HCFC-22. Several possible explanations exist for these elevated measurements: 1) Flasks collected over the

Arabian Sea were compromised due to long storage times (over 1 month) at temperatures exceeding 40 ◦C before transport

back to the UK for analysis. Long-term tests on the stability of HFC-134a at these temperatures have not been conducted; 2)

the enhancements were the result of ship-borne emissions from the Indian Ocean. These flights were at low-altitude (0.01 – 0.830

km) and could have resulted in the measurement of sporadic emissions from ship-based air conditioning systems.
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3.2 ODS and HFC emissions estimates for NCI and India

Mean NCI and Indian emissions estimates and the relative contributions of each gas to 2016 global emissions are shown in

Fig. 4 and tabulated in Table 4 (Gg yr−1) and Table 5 (Tg CO2eq yr−1). Uncertainties presented throughout correspond to the

5th and 95th percentiles of the posterior distribution.

We estimate 2016 CFC, HCFC and HFC emissions to be 52 (26 – 83) Tg CO2eq yr−1, 15 (11 - 19) Tg CO2eq yr−1 and 505

(38 – 64) Tg CO2eq yr−1 respectively, which correspond to 7 (4 – 12) %, 2 (1 – 3) % and 6 (5 – 8) % of global emissions.

There are no previous top-down national-scale estimates of any of these gases for India. In 2016, India’s HFC emissions were

approximately an order of magnitude larger than the 2016 emissions assumed by Velders et al. (2015), suggesting that future

projections of India’s HFC emissions could be inaccurate.

3.2.1 CFCs10

Through commitments under the Montreal Protocol, India finalised its phase-out of the consumption and production of CFCs in

2010. However, residual emissions from banks (refrigerators, foams, landfills etc.) are expected to continue for several decades

(Rigby et al., 2014). Our mean CFC-11, CFC-12 and CFC-113 emissions are 1.7 (0.8 – 3.1) Gg yr−1, 4.1 (2.1 – 6.3) Gg yr−1

and 0.5 (0.2 – 0.8) Gg yr−1, respectively, corresponding to 2 (1 - 4) %, 13 (7 - 20) %, and 7 (2 - 11) % of global emissions in

2016. For all CFCs studied here, these percentages are smaller than India’s percentage population of the global total (17.7% in15

2016 (SEDAC, 2016)). The magnitude of the uncertainties in our CFC estimates are largely a reflection of the precision of the

measurements. Further work is needed through additional high-precision measurements, particularly for CFC-12, to narrow

this uncertainty. For CFC-11, our 2016 estimate of 1.2 (0.6 – 2.2) Gg yr−1 suggests that NCI, the region with the majority of

India’s population, is unlikely to have contributed significantly to the recent rise in global emissions (an increase of 13 ± 5 Gg

yr−1) reported between 2013 – 2016 (Montzka et al., 2018).20

3.2.2 HCFCs

There is limited information about HCFC emissions from India, with the current state of knowledge encapsulated only in

reports of production and consumption (MoEFCC, 2017). We find that India’s 2016 HCFC emissions are dominated by HCFC-

22 at 7.8 (6.0 – 9.9) Gg yr−1, and these emissions comprise only 2 (1 - 3) % of global emissions. Our HCFC-22 emissions

are comparable in magnitude to HFC-134a and HFC-125, discussed below, suggesting that India’s transition from HCFCs to25

their non-ozone depleting replacements is in progress. India’s HCFC-22 emissions are considerably smaller than those from

other nations such as China, whose emissions in 2007 were estimated at 165 (140 - 213) Gg yr−1 (Vollmer et al., 2009) and

the USA, whose emissions in 2014 were estimated at 40.0 (34.1 – 45.8) Gg yr−1 (Hu et al., 2017).

Our estimates of India’s HCFC-141b and HCFC-142b emissions are small (1.0 (0.7 – 1.5) Gg yr−1 and 0.10 (0.06 – 0.14)

Gg yr−1, respectively). Taken together with the small reported consumption of these gases in 2015, our results suggest that30

either these substances have not had widespread usage in India or that efforts have been made by India under Stage I of the

HPMP to phase-out HCFC consumption in the foam sector (MoEFCC, 2017), in favour of zero-ODP alternatives (UNDP,
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2013). However, without detailed emissions information from previous years, it is not possible to determine whether the latter

has been in effect.

3.2.3 HFCs

India’s HFC emissions are dominated by emissions of HFC-134a and HFC-125, with estimated rates of 8.2 (6.1 – 10.7)

Gg yr−1 and 6.4 (5.2 – 7.8) Gg yr−1 respectively. These emissions correspond to 4 (3 - 5) % and 10 (8 - 12) % of global5

emissions. There are significant discrepancies between previous bottom-up estimates and our top-down results. Garg et al.

(2006) estimated Indian HFC-134a emissions to be 1.1 Gg yr−1 in 2005, while India reported 0 Gg yr−1 in 2010 in its Biennial

Update Report to the United Nations Framework Convention on Climate Change (UNFCCC) (MoEFCC, 2015).While there

are no top-down comparisons for 2005, our results show there could have been significant growth in emissions of HFC-134a

since 2005 and/or large discrepancies between bottom-up and top-down methodologies.10

Further work and additional measurements are required to better understand the non-refrigerant blend sources of HFC-

125. Our results suggest a possible application of HFC-125 in India as a standalone refrigerant, or an application that is not

currently for HCFC-22 replacement. Possible contributors are fire suppression, use as a solvent and the production of HFC-125

for export. While our model was able to capture most of the signals for the gases studied here (Fig. 5), it was unable to simulate

some of the elevated measurements for HFC-125, indicating that in addition to widespread, constant sources, there could be15

point sources of HFC-125 that are episodic and difficult to resolve in a model.

We estimate India’s emissions of HFC-143a to be 0.8 (0.4 – 1.2) Gg yr−1, which comprise 3 (1 - 4) % of global emissions.

Our low HFC-143a estimate corroborates our assertion of minimal R-404A and R-507A consumption. There are no previous

estimates for Indian HFC-143a emissions.

India’s HFC-152a emissions are estimated to be 1.2 (0.9 – 1.4) Gg yr−1, which amount to 2 (2 - 3) % of global emissions.20

Garg et al. (2006) estimated India’s HFC-152a emissions to be 0.04 Gg yr−1 in 2005 and attributed these to the glass industry.

Our emission rate is comparatively large, suggesting that either there are discrepancies with inventory methodologies or that

there has been substantial growth in emissions in the last decade. Regardless, these emissions are small compared to other

countries, particularly China, whose emissions of HFC-152a were estimated at 16 Gg yr−1 in 2013 (Fang et al., 2016), and the

USA, for which an emission rate of 51.5 (35.5 – 75.5) Gg yr−1 was estimated for 2012 (Simmonds et al., 2015).25

HFC-32 emissions are estimated for NCI to be 0.44 (0.36 – 0.54) Gg yr−1. All the measured enhancements in HFC-32 are

correlated with enhancements in dichloromethane, a feedstock in the manufacture of HFC-32 (Fig. 3). These measurements

suggest that India’s HFC-32 emissions originate predominantly from fugitive losses during the manufacturing process, rather

than widespread use in a refrigerant blend. Our assertion is consistent with a previous study (Leedham Elvidge et al., 2015),

which attributed growth in South Asian emissions of DCM to HFC-32 manufacture. Since our NCI HFC-32 estimate is at-30

tributed to production, we consider it to be decoupled from population density, and hence we have not scaled this value to a

national total.

11

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1146
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 9 January 2019
c© Author(s) 2019. CC BY 4.0 License.



HFC-23 emissions are estimated for India to be 1.2 (0.9 – 1.5) Gg yr−1, which comprise 10 (7 - 12) % of global emissions.

Fig. 6 shows that emission ‘hot-spots’ picked out by the inverse model are consistent with the known locations of HCFC-22

manufacturing facilities.

3.3 India’s HFC-23 emissions and the Clean Development Mechanism

Between 2004 and 2013, India received substantial funding from the Clean Development Mechanism for the abatement of5

HFC-23 produced during the manufacture of HCFC-22. To assess the impact of the CDM on India’s HFC-23 emissions, we

compare our HFC-23 emission estimate to previous estimates derived from bottom-up methods (Fig. 7). Emissions between

1990 and 2005 are from Garg et al. (2006), and in 2007 and 2010 are from India’s reports to the UNFCCC (MoEFCC, 2012,

2015). The reported bottom-up estimates show accelerating growth in India’s HFC-23 emissions, which increased from 0.07

Gg yr−1 in 1990 to 1.43 Gg yr−1 in 2010. It is important to note that there is a large discrepancy in emissions reported in the10

UNFCCC inventory and in the manufacturers’ CDM submissions, suggesting inconsistencies in the two methodologies. These

discrepancies highlight the value of independent top-down estimates.

Depending on the efficiency of the manufacturing process, the HFC-23/HCFC-22 production ratio can vary between 0.014

(Rotherham, 2004) for optimised processes to values in excess of 0.04 for inefficient processes (McCulloch and Lindley,

2007). The production ratio is equal to the quantity of HFC-23 produced with respect to the quantity of HCFC-22 produced15

and is equivalent to an HFC-23 emission ratio when no abatement technologies are implemented. Based on India’s HCFC-22

production statistics and bottom-up HFC-23 emission estimates, in 2007, prior to when all five manufacturers of HCFC-22

reported the use of abatement technologies, the average production ratio was 0.031.

The Clean Development Mechanism was in operation in India between 2004 and 2013. During the period of the CDM when

abatement was in use at all facilities (2009 - 2013, https://cdm.unfccc.int/Projects/registered.html), the average emission ratio20

dropped to 0 – 0.009 based on the amount of non-abated HFC-23 (i.e. emissions vented to the atmosphere) reported by the

manufacturing facilities. Our top-down estimate in 2016 corresponds to an average emission ratio of 0.022. While the CDM

may have been effective in reducing HFC-23 emissions, our results are consistent with resumed venting of HFC-23 by some or

all manufacturers, following the discontinuation of CDM funding. In October 2016, the Indian government issued a national

order requiring all manufacturers of HCFC-22 to maintain a proven abatement system and ensure capacity for the storage of25

HFC-23 for abatement system down-time. With such systems in place, future growth in India’s HFC-23 emissions may become

de-coupled from any growth in HCFC-22 production.

3.4 Sensitivity tests

We assessed the sensitivity of derived emissions to the a priori emissions field. For all gases, the two solutions derived using

the spatially-varying and uniform priors were the same within uncertainties, showing our posterior estimates to be robust to30

the prior used (Fig S3). We also compared the effect of inaccurate transport modelling on derived emissions by using a second,

filtered dataset, removing times where NAME wind direction and wind speed differed by more than 20% from the measured

parameters. A comparison of original and ‘filtered’ posterior estimates is given in Fig. S3. For all 12 halocarbons, the filtered
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estimates were within the uncertainty of the original values, indicating that our estimates were robust with respect to small

model transport errors.

4 Conclusions

We present the first national-scale top-down emissions estimates of ODS and HFCs for India. We show that for all of the gases

studied here, India’s 2016 emissions reflect an emissions profile typical of Article 5 countries, with low emissions of CFCs and5

large emissions of both HCFCs and HFCs. India’s emissions of these gases generally comprise a smaller percentage of global

emissions than its 17.7% of the world’s population in 2016 would imply. India reported a complete phase-out of CFCs in 2010,

however banks such as dated refrigeration equipment, insulating foams and landfill may persist. Our results indicate that India’s

remaining major CFC emissions represent 7 (4-12) % of global emissions. Of the gases studied here, India’s largest emissions

are from HFC-134a, HFC-125 and HCFC-22. HFC-134a and HCFC-22 have similar magnitudes of emissions, suggesting that10

India is in transition between employing HCFC and HFC refrigerants. We present evidence to suggest that India is yet to adopt

several common refrigerant blends, including R-410A, R-404A and R-507A, all of which are used extensively in the developed

world. India’s apparent lack of uptake of refrigerant blends presents as an opportunity for future climate mitigation strategies;

if India can be encouraged to bypass HFCs in favour of low-GWP alternatives, substantial CO2eq emissions could be avoided.

We also show that following discontinuation of funding from the CDM, some or all of India’s manufacturers of HCFC-22 likely15

resumed venting of the HFC-23 by-product. As India’s economy expands, projections suggest that its consumption of HFCs

will grow significantly. It is important to implement long-term and continuous HFC, HCFC and CFC monitoring from this

region of the world to help India evaluate its progress under the Montreal Protocol. Our 2016 estimates provide a benchmark,

against which future changes to India’s ODS and HFC emissions can be assessed.

5 Code availability20
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Figure 1. (A) Location and altitude of aircraft samples collected over India. The flight paths outlined in boxes were repeated three times each

over the sampling period. (B) Average sensitivity to surface emissions from all samples collected over India. A region broadly corresponding

to maximum sensitivity in the samples is shown in the blue outline. We denote this region as northern-central India (NCI).
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Figure 2. (A) CFC, (B) HCFC and (C) HFC mole fraction data from 176 flask samples collected over India, plotted on a flight by flight basis

(a summary of flights 1-11 is given in Table 2). Error bars represent instrumental precision, which was estimated using the standard deviation

of the three replicate analyses of each flask. Two statistical baselines, inferred from observations at Mace Head, Ireland (black line) in the

Northern Hemisphere and Cape Grim, Tasmania (red line) in the Southern Hemisphere, are shown for comparison.
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Figure 3. Key ODS and HFC scatter plots, shown with line of best fit and respective Pearson correlation coefficient. For HFC-32 vs

dichloromethane, the sub-scatter shown in orange is a subset of the dataset corresponding to samples whose HFC-32 mole fraction (lower

bound of measurement uncertainty) exceeded the 20th percentile of all measurements (and were hence classified as enhanced) since there

are other anthropogenic and natural sources of dichloromethane.
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Figure 4. (A) NCI (orange) and India total (red) ODS/HFC emissions (Gg yr−1) derived in this study. India’s most recent greenhouse gas

inventory estimates (2010) are included where available. (B) The estimated contribution of the NCI and India to global ODS/HFC emissions

(global estimates are an extension of the work by Rigby et al. (2014)). The dashed line represents India’s percentage of the global population

in 2016. Error bars represent the 5th-95th percentiles of the posterior distribution.
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Figure 5. Comparison of measured (black points) with prior (blue) and posterior (red line) ODS/HFC mole fraction data, plotted on a flight

by flight basis (a summary of flights 1-11 is given in Table 2). The shading represents the model uncertainty (5th – 95th percentile of the

posterior PDF). For all gases, prior emissions were distributed according to the NOAA night light distribution.
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Figure 6. Posterior emissions map for HFC-23, reported in mol m−2 s−1. The known locations of major (> 8 Gg yr−1) and minor (< 1.5

Gg yr−1) manufacturers of HCFC-22 are represented by the crosses and open triangles respectively. The NCI model domain boundaries are

given by the blue line.
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crosses) and India’s Second National Communication MoEFCC (2012) and Biennial Update Report MoEFCC (2015) to the UNFCCC for

2007 and 2010, respectively (black triangles). The top-down estimate derived here is plotted as a purple circle with corresponding 5th-95th

percentile uncertainties. Blue circles show the total amount of ‘vented’ (i.e. released to the atmosphere) HFC-23 per year, as reported by

the five HCFC-22 manufacturers during the CDM period. Reported HCFC-22 production (Gg yr−1) data is shown in orange circles and

extrapolated to 2016 using a linear fit (dashed orange line). The red bar indicates the first year (2009) in which all five manufacturers of

HCFC-22 reported the use of an abatement system and the blue bar indicates the point (January 2013) at which the European Union banned

the use of HFC-23 credits under the EU Emissions Trading Scheme. Note the split y-axes – HFC-23 emissions estimates are plotted with

respect to the left-hand axis, while HCFC-22 production data is plotted with respect to the right-hand axis.
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Table 1. Ozone-depleting and greenhouse gases considered in this study. Estimates of lifetime and 100 year global warming potential

(GWP100) are from Myhre et al. (2013). Ozone depletion potentials (ODP) are from the WMO 2014 Scientific Assessment on Ozone

Depletion (Organisation, 2014).

Species Formula Lifetime ODP GWP100 Main application

CFC-11 CCl3F 45.0 1.00 4660 Refrigerant

CFC-12 CCl2F2 100.0 0.73 10200 Refrigerant

CFC-113 CCl2FCClF2 85.0 0.81 5820 Solvent

HCFC-22 CHClF2 11.9 0.034 1760 Refrigerant

HCFC-141b CH3CCl2F 9.2 0.102 782 Foam-blowing

HCFC-142b CH3CClF2 17.2 0.057 1980 Foam-blowing

HFC-134a CH2FCF3 13.4 0 1300 Refrigerant

HFC-143a CH3CF3 47.1 0 4800 Refrigerant

HFC-125 CHF2CF3 28.2 0 3170 Refrigerant

HFC-152a CH3CHF2 1.5 0 138 Aerosol propellant

HFC-32 CH2F2 5.2 0 677 Refrigerant

HFC-23 CHF3 222.0 0 12400 By-product
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Table 2. Aircraft campaign flight summary statistics. All samples were collected during June and July of 2016. IST – Indian Standard Time

Flight number (Fig. 2 label) Date (time, IST) Sampling region Mean altitude (range, km) Number of samples

B957 (1) 12/06 (06:02 – 07:55) NE India 1.20 (0.30 – 7.40) 9

B959 (2) 21/06 (08:10 – 08:21) S India 0.46 (0.05 – 0.87) 2

B963 (3) 25/06 (16:52 – 18:00) S India 0.31 (0.21 – 0.53) 4

B966 (4) 27/06 (07:12 – 09:49) S India 0.30 (0.02 – 0.66) 9

B968 (5) 30/06 (05:03 – 06:51) NW India 0.98 (0.28 – 3.15) 11

B969 (6) 02/07 (05:21 – 07:11) NW India 0.53 (0.28 – 0.64) 11

B971 (7) 04/07 (07:23 – 08:57) NE India 0.38 (0.02 – 1.65) 20

B972 (8) 05/07 (05:23 – 07:06) NW India 0.83 (0.30 – 1.65) 27

B974 (9) 07/07 (06:22 – 07:30) NW India 1.29 (0.88 – 2.90) 26

B975 (10) 09/07 (06:31 – 08:14) NE India 0.37 (0.02 – 1.16) 44

B976 (11) 10/07 (06:37 – 07:32) NW India 0.42 (0.35 – 0.53) 12
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Table 3. ODS and HFC mass spectrometry target/qualifier ions and respective calibration scales from the Scripps Institution of Oceanography

(SIO). Average flask measurement precisions are also shown.

Species Target ion Qualifier ion Calibration scale Average measurement precision (%)

CFC-11 CFCl2+ (m/z 103) CFCl2+ (m/z 105) SIO-05 0.4

CFC-12 CF2Cl+ (m/z 85) CF2Cl+ (m/z 87) SIO-05 0.7

CFC-113 CF2ClCFCl+ (m/z 153) CF2ClCFCl+ (m/z 155) SIO-05 0.4

HCFC-22 CHClF+ (m/z 67) CHF2
+ (m/z 51) SIO-05 0.9

HCFC-141b CH3CFCl+ (m/z 81) CH2CCl2+ (m/z 61) SIO-05 3.4

HCFC-142b CH3CF2
+ (m/z 65) CF2Cl+ (m/z 85) SIO-05 0.5

HFC-134a CH2FCF2
+ (m/z 83) CH2F+ (m/z 33) SIO-05 0.8

HFC-143a CH3CF2
+ (m/z 65) CH2CF2

+ (m/z 64) SIO-07 1.3

HFC-125 CHF2CF2
+ (m/z 101) CHF2

+ (m/z 51) SIO-15 1.5

HFC-152a CH3CF2
+ (m/z 65) CH2CF2

+ (m/z 46) SIO-05 3.2

HFC-32 CH2F+ (m/z 23) CHF2
+ (m/z 51) SIO-07 1.1

HFC-23 CF3
+ (m/z 69) CHF2

+ (m/z 51) SIO-07 0.8
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Table 4. Posterior mean ODS and HFC emission estimates reported in Gg yr−1 for northern-central India and the whole of India, and

the percentage contribution of India to global emissions, where appropriate. The 5th and 95th percentile ranges are shown in parentheses.

HFC-32 is not scaled to an India total since NCI emissions are not considered to be related to population density.

Species NCI Prior NCI Posterior India % of India to global

CFC-11 9.0 (4.5 – 15.7) 1.2 (0.6 – 2.2) 1.7 (0.8 – 3.1) 2.3 (1.1 – 4.2)

CFC-12 4.1 (1.9 – 7.5) 2.9 (1.5 – 4.5) 4.1 (2.1 – 6.3) 12.6 (6.5 – 19.6)

CFC-113 0.89 (0.58 – 1.28) 0.35 (0.12 – 0.59) 0.49 (0.17 – 0.82) 6.7 (2.3 – 11.3)

HCFC-22 8.0 (5.0 – 12.2) 5.6 (4.3 – 7.1) 7.8 (6.0 – 9.9) 2.1 (1.6 – 2.7)

HCFC-141b 2.1 (1.3 – 3.2) 0.7 (0.5 – 1.1) 1.0 (0.7 – 1.5) 1.8 (1.2 – 2.6)

HCFC-142b 0.09 (0.04 – 0.17) 0.07 (0.04 – 0.10) 0.10 (0.06 – 0.14) 0.4 (0.2 – 0.6)

HFC-134a 5.9 (3.8 – 8.8) 5.9 (4.4 – 7.7) 8.2 (6.1 – 10.7) 3.7 (2.7 – 4.8)

HFC-143a 1.4 (0.6 – 2.7) 0.56 (0.30 – 0.87) 0.8 (0.4 – 1.2) 2.7 (1.4 – 4.2)

HFC-125 1.5 (0.6 – 2.7) 4.6 (3.7 – 5.6) 6.4 (5.2 – 7.8) 10.1 (8.1 – 12.3)

HFC-152a 1.1 (0.6 – 2.0) 0.9 (0.7 – 1.0) 1.2 (0.9 – 1.4) 2.3 (1.8 – 2.7)

HFC-32 0.11 (0.06 – 0.18) 0.44 (0.36 – 0.54) - -

HFC-23 1.1 (0.59 – 1.7) 1.2 (0.9 – 1.5) 1.2 (0.9 – 1.5) 9.6 (7.2 – 12.0)
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Table 5. Posterior mean ODS and HFC emission estimates reported in Tg CO2eq yr−1 for northern-central India and the whole of India. The

5th and 95th percentile ranges are shown in parentheses. HFC-32 is not scaled to an India total since NCI emissions are not considered to be

related to population density.

Species NCI Prior NCI Posterior India

CFC-11 41.9 (21.0 – 73.2) 5.6 (2.8 – 10.3) 7.8 (3.9 – 14.3)

CFC-12 41.8 (19.4 – 76.5) 29.6 (15.3 – 45.9) 41.3 (21.3 – 64.0)

CFC-113 5.2 (3.4 – 7.4) 2.0 (0.7 – 3.4) 2.8 (1.0 – 4.8)

HCFC-22 14.1 (8.8 – 21.5) 9.9 (7.6 – 12.5) 13.8 (10.6 – 17.4)

HCFC-141b 1.6 (1.0 – 2.5) 0.58 (0.38 – 0.86) 0.8 (0.5 – 1.2)

HCFC-142b 0.18 (0.08 – 0.34) 0.14 (0.08 – 0.20) 0.19 (0.11 – 0.28)

HFC-134a 7.7 (4.9 – 11.4) 7.7 (5.7 – 10.0) 10.7 (8.0 – 14.0)

HFC-143a 6.7 (2.9 – 13.0) 2.7 (1.4 – 4.2) 3.8 (2.0 – 5.8)

HFC-125 4.8 (1.9 – 8.6) 14.6 (11.7 – 17.8) 20.3 (16.4 – 24.8)

HFC-152a 0.15 (0.08 – 0.28) 0.12 (0.09 – 0.14) 0.16 (0.13 – 0.19)

HFC-32 0.07 (0.04 – 0.12) 0.30 (0.24 – 0.37) -

HFC-23 13.6 (7.3 – 21.1) 14.9 (11.2 – 18.6) 15.1 (11.3 – 18.9)
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